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Summary

Background: Polar bears (Ursus maritimus) are among those
species most susceptible to the rapidly changing arctic
climate, and their survival is of global concern. Despite this,
little is known about polar bear species history. Future
conservation strategies would significantly benefit from an
understanding of basic evolutionary information, such as the
timing and conditions of their initial divergence from brown
bears (U. arctos) or their response to previous environmental
change.
Results: We used a spatially explicit phylogeographic model
to estimate the dynamics of 242 brown bear and polar bear
matrilines sampled throughout the last 120,000 years and
across their present and past geographic ranges. Our results
show that the present distribution of these matrilines was
shaped by a combination of regional stability and rapid,
long-distance dispersal from ice-age refugia. In addition,
hybridization between polar bears and brown bears may
have occurredmultiple times throughout the Late Pleistocene.
Conclusions: The reconstructed matrilineal history of brown
and polar bears has two striking features. First, it is punctuated
by dramatic and discrete climate-driven dispersal events.
Second, opportunistic mating between these two species as
their ranges overlapped has left a strong genetic imprint. In
particular, a likely genetic exchange with extinct Irish brown
bears forms the origin of the modern polar bear matriline.
This suggests that interspecific hybridization not only may
be more common than previously considered but may be
a mechanism by which species deal with marginal habitats
during periods of environmental deterioration.

Introduction

Recent and ongoing climatic changes across the northern lati-
tudes, including elevated air temperatures, melting glacial ice,
and rising sea levels, are reshaping the arctic ecosystem, with
devastating consequences for arctic-adapted species. Among
the most threatened of these is the polar bear, for which
declining sea ice represents the greatest challenge to its
survival [1]. Rapid declines in ice extent over the last 50 years
have coincided with changes in the distribution, abundance,
fecundity, and body size of polar bears [2]. Fewer sea-ice
days mean longer open-water periods during summer, forcing
polar bears onshore in search of food [1, 3] and leading to
potentially dangerous interactions with humans [2]. An
increase in terrestriality may also be a key driver for opportu-
nistic interspecific breeding with brown bears, with several
adult hybrid bears reported in the last five years [4].
Polar bears are proposed to have evolved from brown bears

that became isolated on Siberian coastal enclaves as recently
as the Middle Pleistocene, 800–150 thousand years ago (kya)
[5]. Both morphological [6] and nuclear genetic data [7, 8]
support a deep divergence between the two bear species,
which show marked differences in dentition, integument, and
physiology. The modern polar bear mitochondrial lineage,
however, falls within the genetic diversity of brown bears; it
is most closely related to those found in a population of brown
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Figure 1. Maximum Clade Credibility Genealogy Describing the Estimated

Evolutionary History of Sampled Brown and Polar Bear Matrilines

Maximum clade credibility (MCC) genealogy resulting from a phylogeo-

graphic BEAST [39] analysis of 242 brown bears and polar bears ranging

in age from 120 thousand years ago (kya) to modern. Colors along the

branches describe the most probable geographic location of each lineage.

Black circles indicate major nodes with >85% posterior support, summari-

zed from the combined output of threeMarkov chainMonte Carlo chains run

for 150 million iterations each and sampled every 10,000 iterations. Letters

A–C highlight nodes discussed in the main text. Background shades of

gray indicate warm (light gray) and cool (dark gray) marine isotope stages.
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bears from the Admiralty, Baranof, and Chichagof (ABC)
islands of southeastern Alaska [9–13]. These data have been
used to support the hypothesis that the morphological differ-
ences between the two species may be due to rapid adapta-
tion of polar bears to their highly specialized arctic lifestyle
[10, 14] and that the mitochondrial phylogeny reflects incom-
plete lineage sorting [14]. Alternatively, the sister relationship
between ABC island brown bears and polar bears may be
explained by recent hybridization between the two species
and the introgression of a brown bear mitochondrial lineage
into polar bears. Although both bears are strongly maternally
philopatric, the geographic distribution of their matrilines is
not stable through time [15], and lineage-wide extinctions
may be frequent [16].
We used a spatially explicit Bayesian inference approach

to examine different phylogeographic histories of brown
bear and polar bear matrilines sampled over at least the last
100 kya. We incorporated data from every geographic location
known to have been occupied by brown bears during the time
since the estimated most recent common ancestor (MRCA) of
modern polar bear matrilines (circa 45 kya; [10, 17]), including
a previously unsampled Late Pleistocene population of brown
bears from the vicinity of modern-day Britain and Ireland. We
also included two recently published ancient polar bear matri-
lines, both believed to come from bones older than 110 kya
[10, 14], and 51 mitochondrial sequences from modern and
Holocene (up to 8000 years old) polar bears, resulting in
a data set that spans the present geographic distributions of
both bear species.

Results and Discussion

Late Pleistocene/Holocene Phylogeography of Brown

and Polar Bears
The recent history of polar bear and brown bear matrilines was
characterized by long periods of geographic stability punctu-
ated by episodes of rapid matrilineal dispersal, often over
considerable geographic distances (Figure 1; Figure 2; see
also Figure S1 available online). This is best illustrated by the
inferred radiation of brown bears out of Alaska during the
marine isotope stage (MIS) 3 interstadial (Bayes factor, BF [18],
support for Alaska in comparison to any other location = 45),
which was a period of peak environmental conditions for
ice-age megafauna [19]. This rapid, long-distance radiation
(clade IIIa, Figure 1) established clusters of closely related
matrilines in Japan, Kamchatka, Siberia, and both Eastern
and Central Europe by 14 kya.
Clade II was much more geographically widespread during

MIS 3 than it is today and comprised brown bears fromSiberia,
Alaska, and modern-day Britain and Ireland, as well as the two
ancient polar bear matrilines (Figure 1). After the last glacial
maximum (LGM), clade II was isolated to small regions of
Alaska (ABC islands) and the vicinity of modern-day Ireland
(Figure 1). Modern brown bears living on the ABC islands share
a matrilineal common ancestor 37–10 kya (median 24 kya),
a timing coincident with climatic changes surrounding the
LGM that may have led to their isolation from brown bears
living on the mainland. In Ireland, brown bears carrying the
As noted previously [15, 16], the branching order among the earliest

diverging branches is not well resolved, with the exception of very high

support (99.97%) for monophyly of the clade III/IV lineage. See also Fig-

ure S1. Table S1 contains detailed information about the specimens used

in this analysis.
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Figure 2. Reconstructed Spatial Diffusion Pathways of Brown and Polar Bear Matrilines over the Last 120,000 Years

Map indicating the 13 locations to which each matriline was assigned and the 14 significant diffusion pathways that describe the maternal phylogeographic

history of brown bears and polar bears over the last circa 120 kya. For the phylogeographic analyses, we assigned all polar bears to a single geographic

location, depicted here as Svalbard. Nonreversible diffusion rates are estimated across the entire distribution of posterior trees and therefore reflect average

rates of diffusion over time. Rates are considered to be significantly different from zero with Bayes factor (BF) > 8. The significant diffusion pathways are

shown in pink, with increasing significance indicated by darker shades and arrows indicating the direction of diffusion. An interactive visualization of the

diffusion process of the ancestral bear matrilines over time is available at http://www.phylogeography.org/BEARS.html. Figure S2 describes the results

of two sensitivity analyses performed to assess the phylogeographic results depicted here and in Figure 1.
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clade II matriline are present prior to 26 kya and again after 12
kya, but no bear fossils of any kind have been dated to the LGM
(Table S2; Figure 3), suggesting that suitable habitat may not
have persisted in Ireland through the peak of the last ice age.

The Origin and Evolution of the Polar Bear Matriline

As has been shown previously, all modern polar bear matri-
lines cluster within clade II (Figure 1). However, in contrast to
previous analyses, we found no evidence for reciprocal mono-
phyly between brown and polar bears within this clade, nor do
our results support a sister relationship of polar bears with the
ABC island brown bears. Instead, the inferred common matri-
lineal ancestor of modern polar bears falls within the genetic
diversity of Irish brown bears (BF = 53). The low posterior
support for modern polar bear monophyly (Figure 1, node A)
is due to modern polar bear lineages frequently clustering
into several clades within the diversity of clade II Irish brown
bears in the posterior distribution of trees.

The two older polar bear matrilines, one isolated from
a jawbone from Svalbard [10] associated with a stratigraphic
layer dated to 130–110 kya [20] and another from a rib bone
from northern Norway believed to date to circa 115 kya [14],
also fall within clade II (Figure 1, node B). However, although
these two sequences are closely related to each other, they
are not directly ancestral to the modern polar bear matriline:
modern polar bear matrilines cluster with the ancient polar
bear matrilines with less than 5% posterior probability. If
incomplete lineage sorting were to explain these results, as
suggested previously [14], the coalescent event of the two
lineages in question would have to have taken place prior to
speciation. Because the coalescence of all modern polar
bear matrilines postdates the age of the two ancient bears
(and therefore the speciation date), hybridization followed by
matrilineal introgression is much more likely than incomplete
lineage sorting to explain the observed data.
Figure 4 describes three hypothetical scenarios that may
explain the phylogeographic relationships presented here. In
the scenario depicted in Figure 4A, the timing of the initial
divergence between brown bear and polar bear matrilines is
the same as our estimated MRCA of modern polar bear matri-
lines. This scenario describes most closely the prevailing
hypothesis explaining themitochondrial data: a sister relation-
ship between polar bear matrilines and those of ABC island
brown bears. However, although it is consistent with condi-
tions during the LGM favoring the emergence of a cold-adap-
ted species, the timeline of this scenario conflicts with both the
existence of the two ancient polar bears and the high degree of
morphological and behavioral dissimilarity between brown
bears and polar bears. This hypothesis could only be tenable
if the ancient polar bear sequences contain errors that force
them to fall erroneously outside of the diversity of the modern
polar bears and the ancient Irish and ABC island brown bears.
The scenario depicted in Figure 4B accommodates the two

ancient polar bears by allowing brown bear and polar bear
matrilines to diverge earlier than depicted in Figure 4A. In this
scenario, thematernalMRCAof polar bears, Irish brown bears,
and ABC island brown bears diverged from ancestral brown
bears carrying the clade II matriline during the Pleistocene.
Because of uncertainty surrounding the age of the two ancient
polar bear fossils, we allow the age of both mitochondrial line-
ages to be random variables drawn from a distribution ranging
from the oldest bound on their stratigraphic dates (130 kya) to
the most recent bound on their radiocarbon dates (40 kya)
using a tip-sampling method [21]. The estimated age of the
MRCA of clade II matrilines is 135–111 kya, roughly similar to
but slightly younger than that estimated by either Lindqvist
et al. [10] (152 kya) or Davison et al. [14] (160 kya). This most
likely reflects differences between methods used to calibrate
the molecular clock, because the incorporation of an external
(fossil) calibration will result in a slower overall evolutionary

http://www.phylogeography.org/BEARS.html
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occurring 20.9–14.7 kya [32] and that Ireland

was completely covered in ice from circa
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samples and ancient DNA sequencing are

provided in Table S2.
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rate [14]. In our analyses, the age of this particular node is
highly influenced by the age of the ancient polar bears. When
the ages of the two ancient polar bear sequences are sampled
between 130–100 kya, rather than 130–40 kya, the estimated
age of the MRCA of this node is 166–120 kya, overlapping
with both our estimates using the less constrained age and
the previous estimates.

If the Irish bears carrying clade II matrilines, or at least those
Irish bears associated with radiocarbon ages postdating the
LGM, were actually polar bears and not brown bears, then
fewer hybridization events would be required to explain the
observed data (in Figure 4B, only the transfer of the polar
bear matriline to the ABC island brown bears would be
required). However, bone isotopic data indicates that all Irish
bears had a terrestrial diet similar to that of late Pleistocene
brown bears from Alaska [15] and dissimilar to the markedly
marine diet of polar bears (Supplemental Experimental Proce-
dures). The scenario depicted in Figure 4B therefore predicts
the following: an older polar bear matriline, represented in
our analysis by the two ancient polar bears, became wide-
spread across the Arctic. These polar bears hybridized oppor-
tunistically with small, coastal populations of brown bears,
leading in at least two instances to fixation of the polar bear
matriline in brown bear populations (Ireland and the ABC
islands). More recently, additional hybridization occurred in
Ireland, followed by fixation of the Irish brown bear matriline
in polar bears. This marks the MRCA of the modern polar
bear matriline.

A single bear from Fairbanks, Alaska whose mtDNA
sequence was isolated as part of a previous study [15] also
falls within the cluster of Irish brown bear and modern polar
bear matrilines. The fossil from which this sequence was iso-
lated is part of a large, geographically extensive collection of
bones from across Alaska made by
Otto Geist in the late 1930s that is now
housed at the American Museum of
Natural History in New York. Because
the fossil was an ulna belonging to
a juvenile, it could only be identified
morphologically as Ursus. However,
unlike the Irish brown bears, the isotopic
signature of this Alaskan bear is decid-
edly marine [15], leading the authors of
the original publication to conclude
that the specimen was incorrectly prov-
enanced and likely came from the coast
of Alaska rather than from Fairbanks.
Even if the provenance of this specimen is wrong, its radio-
carbon age (19,360 6 140 uncalibrated radiocarbon years
before present; lab accession number OxA-10036) suggests
that polar bears with clade II matrilines were present in Alaska
throughout the LGM, providing additional support for the
multiple-hybridization scenario depicted in Figure 4B and
making it possible that more than one Irish matriline was
captured by polar bears prior to the Holarctic fixation of the
modern matriline.
In Figure 4C, brown bear and polar bear matrilines diverged

prior to the mitochondrial diversification within brown bears.
This allows more time for the evolution of each species’
distinctive phenotype and is consistent with hypotheses of
at least a Middle Pleistocene origin for polar bears [5] but
requires multiple hybridizations with brown bears to explain
both the Svalbard polar bear matriline and the modern polar
bear matriline. If this hypothesis is correct, autosomal markers
should support a divergence between polar bears and brown
bears prior to the divergence of all extant brown bears. To
test this, we analyzed 20 nuclear loci isolated from all eight
extant species within the Ursidae [7, 8, 22]. The small evolu-
tionary distance between brown bears and polar bears
prohibits precise estimates of the brown/polar divergence;
however, the 95% highest posterior density interval of esti-
mated coalescence dates spans the interval 2 Mya–400 kya.
Although there are a number of reasons unrelated to hybridiza-
tion why the mitochondrial MRCA would be more recent than
most autosomal common ancestor dates, such as a smaller
mitochondrial effective population size, this date range
predates by a considerable margin the estimated MRCA of
polar bear and brown bear matrilines.
Regardless of which scenario prevails, modern polar

bears across their Holarctic distribution all share a common
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matrilineal ancestor within the last 51–20 kya. If polar bears
were already widely distributed at this time, this suggests
a complete replacement of the previous mitochondrial lineage
within a remarkably short time frame. Such a recent coales-
cence is feasible given current estimates of their effective
population size (Ne): if the mitochondrial haplotypes were
selectively equivalent and assuming a female Ne of 2,025
based on an estimated 18% of females reproducing in a total
census size of 10,000–12,500 females and a female generation
time of 9.7 years [23], our sample of 51 modern mitochondrial
alleles would coalesce with 95% probability in 93.2–12.9 kya
(median 33.4 kya; Supplemental Experimental Procedures).

The timescale we present is derived from evolutionary rates
calibrated using dated ancient DNA sequences; previous
work has suggested that this may overestimate rates and
therefore underestimate time since divergence [24]. However,
recent evidence suggests that time dependency may not
significantly affect rate estimates over
relatively short time frames, such as
those spanned by our genealogies [25].
Crucially, our phylogeographic esti-
mates of the timing of establishment
of four different brown bear mtDNA
lineages coincide with paleontological
evidence of the first bears in those loca-
tions, providing independent support
for the accuracy of the tip-calibrated
mtDNA evolutionary rates. Specifically,
this includes the establishment of the
clade III/IV lineage in Alaska (BF = 27)
105–70 kya [26], the first appearance
of clade IIIa in eastern Europe by
24–5 kya (median 12 kya) [27], the re-
colonization of Scandinavia by bears
28–9 kya (median 11 kya) [27, 28], and
the movement of bears carrying clade I
from Spain into North Africa 8.5–1.6
kya (median 3.2 kya) (Figure 1, node C,
which likely reflects translocation of
bears by the Romans or Carthaginians
for organized wild animal combat).

The Role of Hybridization in Polar

Bear Evolution
Hybridization between brown bears and
polar bears occurred during a period
of rapid climate change, when fluctua-
tions in the amount and distribution
of habitat in the North Atlantic would
have provided ample opportunity for their ranges to overlap,
and therefore optimal conditions for opportunistic mating.
These same rapid changes may have led to population size
fluctuations, which in turn could contribute to the rapid fixation
of introgressing mitochondrial lineages. The British-Irish ice
sheet (BIIS) reached its maximum extent 22–20 kya, with major
tidewater glaciers on the western shelf and down the Irish
Sea basin into the Celtic Sea [29–31], providing an ideal habitat
for polar bears. Pockets of ice-free refugia comprising open,
treeless steppe tundra similar to that of Beringia may have
remained in southern Ireland during the LGM [32, 33], or at
least up until 26 kya, when our radiocarbon dates indicate
that bears were still present in Ireland, and again after the
initial deglaciation of the BIIS 24–23 kya [29, 34]. Because
most of Ireland would have been uninhabitable even during
the period leading up to the LGM (Figure 3), brown bears
may have been forced to use transient, suitable habitat such
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as sea ice shelves, nunataks, or land exposed by lower sea
levels, increasing the potential for contact with polar bears.

The modern distribution of bear matrilines likely arose as
a consequence of long-term local stability punctuated by
rapid, climate-driven dispersals and opportunistic mating
between polar bears and brown bears. Today, the arctic
climate is again changing rapidly, and the habitat of brown
and polar bears is once again beginning to overlap, providing
the opportunity for the two species to hybridize. Although the
evolutionary role of hybridization is not yet completely under-
stood, the recent proliferation of molecular genetic data is
revealing a growing number of examples from both plants
and animals [35]. Hybridization is known to occur more
frequently in regions where population density is low, or where
species are near the edge of their ecological range [36], and in
some circumstances may provide the means to replace
damaged alleles or to transfer novel traits between species,
providing a fitness advantage to hybrid offspring [35].

Whereas vulnerable populations of both bear species are
currently protected, the protection status of hybrids is less
clear, with a 1996 proposed US policy to protect hybrids [37]
yet to be finalized. Although the extent of any fitness differen-
tial between hybrid brown/polar bears and their parents
remains unclear, given the increasing evidence of hybridiza-
tion among many threatened arctic taxa [4], it may be appro-
priate to reconsider protection of hybrids, because they may
play an underappreciated role in the survival of species. Our
results suggest that, although the genetic mixing observed in
bears today may be an important component of the long-
term evolution of the polar bear, brown and polar bears have
remained evolutionarily distinct lineages over geological
time, suggesting that they are likely to remain as such in the
future.
Experimental Procedures

Data Collection

We extracted DNA from 23 ancient Irish bears, 30 historic polar bears, four

early Holocene (circa 8 kya) polar bears, and 17 modern polar bears (Table

S1; Table S2). Fragments of the mtDNA hypervariable region (HVR) were

selected and amplified so as to overlap with previously published ancient

andmodernmatrilines (Supplemental Experimental Procedures). Matrilineal

clade assignments for ancient Irish bears were verified by amplifying an

additional fragment from the mitochondrial cytochrome b (cytb) gene.

Protocols to control for contamination and validate ancient results were

followed at each step. Mitochondrial sequence data have been deposited

at GenBank with the accession numbers JF900098–JF900175. Additional

HVR sequences were collected from GenBank to compile a data set of

242 brown and polar bear matrilines representing their entire geographic

distribution over the last 120,000 years. Twenty nuclear loci were also

collected from GenBank for each of the eight extant species of Ursidae.

Model Development

We extended a recent approach to infer the spatial dynamics of measurably

evolving populations [38] that now allows for different rates of diffusion

between locations depending on the direction traveled, thereby providing

a more realistic approximation of the geographic diffusion process of large

mammals through time. Our novel approach employs a continuous-time

Markov chain (CTMC) model in which diffusion between n locations is char-

acterized by an n 3 n rate matrix, L, that contains n(n 2 1) off-diagonal,

nonnegative rate parameters lij for i, j = 1,.,n. Previously, phylogenetic

modeling (e.g., [38]) assumed that lij = lji, or at least that L is similar to

a symmetric matrix, as in, for example, the HKY and GTR models.

For our general case, it is possible to decompose L = V D V21, where

matrix V is a set of real eigenvectors and matrix D is of block diagonal

form with 1 3 1 submatrices of real eigenvalues and 2 3 2 submatrices of

complex conjugate pairs of eigenvalues. To draw inference under this

extended model, we devised new algorithms to compute the likelihood of
the observed locations at the tips of the tree by determining the CTMC

finite-time transition probabilities exp(Lt) for real times t along each branch.

Because the amount of phylogeographic data is small, we adopted

a Bayesian stochastic search variable selection (BSSVS) procedure to

select among all possible migration pathway scenarios [38]. We provide

details of this model and its implementation in BEAST [39] with BEAGLE

[40] (Supplemental Experimental Procedures).

Phylogenetic Analyses

For the phylogeographic analyses, we ran two independent Markov chain

Monte Carlo (MCMC) simulations of 50 million iterations using the model

described above for two different data sets: (1) using just the HVR and (2)

incorporating complete mtDNA genomes for ten bears. We assumed the

HKY+G model of nucleotide substitution and either the flexible Bayesian

skyride [41] or Bayesian skyline [42] coalescent priors [41] (Supplemental

Experimental Procedures). Mean accelerator mass spectrometry radio-

carbon dates for ancient specimens calibrated the molecular clock. Six

ancient specimens originating from underrepresented geographic regions

were included: one from Siberia [15], three from Valdegoba Cave, Spain

[43], and two ancient polar bears from Norway [10, 14]. For each of these,

the age of the sequences was assumed a priori to arise from a lognormal

distribution reflecting the most likely age range of that specimen. Tip ages

were numerically integrated via sampling in the MCMC chain for each of

these six specimens simultaneously with evolutionary and demographic

parameters [21]. Initially, we performed analyses with and without the post-

mortem damage (PMD) model [44] to assess the influence of potentially

damaged nucleotides sites on the phylogenetic analysis. A BF comparison

[18] indicated that the PMD model did not improve the model fit, and we

excluded the PMD model from further analyses.

In all MCMC simulations, we subsampled the posterior realizations every

10,000 iterations to decrease autocorrelation and discarded the first 10% as

chain burn-in. For a given data set, we combined remaining samples from all

chains to draw inference. Effective sample size estimates and parameter

trace plots supported MCMC convergence. We computed the summary

maximum clade credibility (MCC) tree (Figure 1) using TreeAnnotator and

developed a BF test [18] to identify which diffusion links were statistically

significant (BF > 8; Figure 2).

We performed two different sensitivity analyses that are described in

detail in Supplemental Experimental Procedures. First, to investigate the

impact of unsampled populations on the Irish-polar bear phylogeographic

link, we simulated unknown (cryptic) lineages in clade II and measured rele-

vant BF support for the conclusion of Irish ancestry of modern polar bear

sequences (Figure S2A). Second, we explored the effect of sampling hetero-

geneity on root state probabilities using location state randomization

(Figure S2B).

To provide a spatial projection, we converted the MCC tree, inferred

posterior modal node locations, and median node heights into a keyhole

markup language (KML) file. The resulting interactive visualization is avail-

able from http://www.phylogeography.org/BEARS.html.

To compare nuclear and mitochondrial species topologies and to further

test the hypothesis that polar bear matrilines are recently derived from

a subset of those in brown bears, we performed additional analyses using

up to 20 nuclear loci (Supplemental Experimental Procedures). For these

analyses, we assumed a Yule prior to inform the speciation rate. We

assumed both strict and relaxed clocks and calibrated the phylogenies by

drawing the age of the radiation of the Ursinae from a lognormal distribution

with 95% of the probability density between 5 and 3 Mya [45].

Accession Numbers

New brown and polar bear mitochondrial sequence data have been depos-

ited at GenBank with the accession numbers JF900098–JF900175.

Supplemental Information

Supplemental Information includes two figures, two tables, Supplemental

Experimental Procedures, and Supplemental Acknowledgments and can

be found with this article online at doi:10.1016/j.cub.2011.05.058.
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